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Abstract 

The symplectic vector space E of the q and p's of classical mechanics allows a basis free 
definition of the Poisson bracket in the symmetric algebra over E. Thus the symmetric 
algebra over E becomes a Lie algebra, which can be compared with the quantum 
mechanical Weyl algebra with its commutator Lie structure. The universality of the Weyl 
algebra is used to study the well-known 'classical' Moyal realisation of the Weyl algebra 
in the symmetric algebra. Quantisations are defined as linear mappings of the underlying 
vector spaces of the two algebras. It is shown that the classical Lie algebra is -2 graded, 
whereas the quantum Lie algebra is not. This proves that they are not isomorphic, and 
hence there is no Dirac quantisation. 

I. Introduction 

In recent years the axiomatic approach to dynamical systems by means 
of (associative C*) algebras of  observables, initiated by I. Segal, has gained 
much interest. Independently of  this approach the algebraical structure of  
classical and quantum observables was investigated several times (of. 
Groenewold, 1946; Falk, 1953; Uhlhorn, 1957). Since then, abstract 
algebra has developed new and powerful methods, like basis free descrip- 
tions, universality, graduations, etc. They facilitate the algebraical com- 
parison between both dynamics, if one regards only observables, which are 
polynomials o f  the canonical position and momentum variables q and p. 

In the following both polynomial algebras are constructed over the 
symplectic vector space (E, a), spanned by the q's and p's. More general, 
instead of introducing a symplectic basis ql . . . .  , q,, p l  . . . .  , p" in which the 
matrix of  a is 
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only general elements x e E are considered, and a is assumed to be a non- 
degenerate skew bilinear form on E with matrix or only. Thus we avoid 
trivial alterations of the results such as replacing qi and p~ by at = q~ + ip ~ 
and al+= q ~ -  ip ~. The ground field is R or C, abbreviated by •. The 
classical algebra is realised as the (commutative) symmetric algebra over 
E. Together with the Poisson bracket it is a - 2  graded Lie algebra. The 
quantum algebra is the Weyl algebra over (E, ~), which is defined by a 
universal property. This universality allows a unified treatment of the 
different realisations of the Weyl algebra, like representations (for instance 
SchrSdinger representation in ordinary quantum mechanics) and the 
well-known Moyal realisation in the symmetric algebra over the dual space 
of E. The Weyl algebra as a Lie algebra under commutation has no such -2  
graduation. This difference of both Lie algebras is used to show that there 
is no Dirac quantisafion (if it is supposed to map the underlying vector 
spaces onto) and to prove an algebraical version of the Ehrenfest theorem, 
which states that the time development of a dynamical system coincides in 
both theories only if the degree of its Hamiltonian does not exceed two. 
Notation: We write ab - ba = [a,b]_ and 2[a,b]+ = ab + ba in associative 
algebras. 'Algebra' means always 'associative algebra with identity element', 
the latter being written 1 with a typical index. The directional derivative o f f  
in the direction v e Vis 

A"=f(x) = l im 1 {f(x + 8v) - f ( x ) } ,  
8-)0 ~' 

x ~ c V  

wherefis  a differentiable function V-+ V' of the two vector spaces V, V' 
and H is open. v ~ AV~f(x) is a linear mapping v ~ V'. Hence for every 
K-valued function f on E there is a uniquely defined grad~f~ E, called the 
gradient o f f  with respect to a, such that 

a(grad,,f, v) = A V j ( x )  

2. The Classical Algebra of  Polynomial Observables 

Let ten(E) be the tensor algebra over E (Chevalley, 1954) with tensor 
multiplication | The symmetric algebra sym(E) over E is defined by 

sym(E) = ten(E)/(x | y - y  | x) (2.1) 

for x, y e E c ten(E), where (x @ y - y  | x) is the two-sided ideal of 
sym(E) of all elements X | (x | y - y  | x) | Y with X, Y e sym(E) 
arbitrary. Obviously ten(E) is commutative and infinite dimensional. If 

t h e ( d i m E ;  i - "  -. 1)-dimensional" vector space generated by the SI(E) is 

elements of degree i, then 

sym(E) = (~ S'(E) (2.2) 
l~>0 
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with S~  = KIn and S I ( E )  = E. If^ is the multiplication in sym(E), then 

s'(E) ^ Sk(E) c S,+k(E) (2.3) 

shows that sym(E) is graded. 
For x, w a E the definition w*(x) = g(w, x)  gives a bijeetion w v-> w" onto 

the dual space E* of E. If one defines 

(z* o yO(x)  = z ' ( x ) y ' ( x )  (2.4) 

the polynomial algebra generated by E* with this multiplication o is 
identical with the symmetric algebra over E ~ and aetually the algebra of 
K-valued polynomials of elements of E with the usual pointwise composi- 
tion. Its identity will be written ls,. For f, g ~ sym(E ~ the Poisson bracket 
P ( f , g )  o f f  and g is defined by 

P ( f ,  g)(x) = a(gradj ,  grad, g) (2.5) 

(Arnold & Avez, 1967, p. 183). It is skew symmetric and bilinear. A verifica- 
tion, using the chain rule, shows the Jacobi identity. Hence the  pair 
(sym(E*),P) is an infinite dimensional Lie algebra. In addition 

P( f t  oj~,g) = A  o P ( f2 ,g )  + P ( f l ,  g) o f  2 (2.6) 

An easy calculation gives 

P(ls.,  x 0  --- 0, P ( x ' , y O ( z )  = a(x ,y )  (2.7) 

P ( x "  o yr vO = or(x, v ) y  ~ + a(y,  v) x* (2.8) 

P(x ~ o y* ,v  ~ o z 0 = a ( x , v ) y  ~ o z r + a ( x , z ) y  ~ o v* 

+ a(y,  v) x ~ o Z r + a(y,  z) x* o v ~ (2.9) 

More generally, using (2.6) and (2.7), one verifies that the Lie algebra 
(sym(E0,P) is - 2  graded, i.e. 

P(S'(E"), = 0 (2.10) 

The Lie subalgebra Hls, (~ E* is the well-known Heisenberg Lie algebra. 
It is an ideal in the Lie algebra Kls, (~)E*@ S2(E0. S2(E *) will be 
identified below. 

The isomorphism w ~ w ~ of E and E ~ can be used to transport the 
Poisson bracket and all the algebraical results from sym(E *) to sym(E). 

It can be shown by a method, given by  Wollenberg (1969a) in the sym- 
plectic basis, that the Poisson bracket is not a commutator of an associative 
algebra multiplication on sym(E0. 

3. The Quantum Algebra o f  Polynomial Observables 

We want to define a universal algebra in which (E,a) is embedded in 
such a way that the commutator of x, y ~ E is identical to a(x,y) .  
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More  exact ly:  A W e f t  algebra over (E,a), written weyl(E,a), is a pair 
(W,~) of an algebra Wand a lin6ar mapping • :E -+ Wsuch that for every 
linear mapping ~b of E into an algebra L with 

~b(x) q~(y) - t~(y) ~(x) = a~(x, y) 1 L, ~e(x, y) e • (3.1) 

there is a unique algebra homomorphism ~b*: W-+ L such that the diagram 

is commutative, i.e. ~b* o O = ~b (Nouzae & Rev0y , 1971, p. 7). 

Theorem: (a) Given two Weyl algebras (W,Q) and (W',~') 
of (E, ~), there is a unique isomorphism ~":  W--> W '  with 
~" o f2 = ~'. (b) W is generated by the image f~(E) and its 
identity 1 w. (3.2) 

The proof is standard (Lang, 1965, p. 367; Jacobson, 1961, p. 153). In the 
following the construction of a Wey! algebra is given. Denote by P the 
restriction to E c ten(E) of the canonical projection ~ from ten(E) onto 
the algebra 

t en (E) / ( x  | y - y | x - a(x,y) 13 0.3) 

for x ,  y ~ E c ten(E). Following Jacobson (1961), p. 155, one proves 

Theorem: The pair ( ten(E) / (x  | y - y @ x - a(x,y) lt), F) 
is a Weyl algebra over (E, a). (3.4) 

The algebra (3.3) was already defined by Segal (1968, p. 148). Trivially 
7r(x |  | x - t r ( x , y ) l t ) = O ,  and (3.2a) shows that (3.1) is valid in 
any Weyl algebra. Using this and (3.2) one proves that for every element D 
of the symplectic matrix Lie algebra der(E, a), there is a unique derivation 
D* of W with t2 o D = D* o 12 (Jacobson, 1961, p. 154). The realisation 
(3.3) of a Weyl algebra shows that E is embedded injectively and that its 
dimension is infinite. Nouaze & Revoy have shown that the centre consists 
of multiples of the identity only (1971, p. 17), that it is simple (1971, p. 24) 
and that all derivations are inner (1971, p. 29). 

The Weyl algebra is the analog of the Clifford algebra of a (pseudo-) 
orthogonal vector space, if one substitutes a for the symmetric bilinear form 
of the latter (Chevalley, 1954, p. 33; Land, 1965, p. 367). For vanishing 
bilinear form they reduce to the symmetric and the exterior algebra 
respectively. 

For x, y ~ E c  weyl(E, tr) one deduces the canonical commutation 
relations 

x y  - y x  = a(x, y)  1 w (3.5) 

from (3.3). Thus the vector space ~lw O E together with the commutator 
is a Heisenberg Lie algebra. With the help of this, we can give another 
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useful characterisation of the Weyl algebra. Given its universal enveloping 
algebra ue(Klw Q E), lw and lu, are different from each other (Jacobson, 
1961, p. 160). Denote by t2' the embedding of Klrv O Einto  ue(Klw ~ E), 
by ~ the canonical projection of  ue(IK1 vr O E) onto 

ue(Klw Q E ) / ( l w -  1,~) (3.6) 

and by f2E the (injective) restriction of ~2 = ~r o f2' to E. 

Theorem: The pair (ue([~lw O E)/(lw - 1,~), OE) is a WeyI 
algebra over (E, ~). (3.7) 

Proof: From its construction, f2~ has the property (3.1) with ~e = tr. Every 
such mapping gives rise to a unique Lie algebra homomorphism q~: 
~ l w  Q E - + L .  Hence from the definition of the universal enveloping 
algebra there is a unique homomorphism ~*: ue(~ lw Q E ) ~ L  with 
~b = ~b* o f2'. Let us define a homomorphism 

ue(Kl  | E ) / ( l w  - - +  L 

by ~b = q~e* o re. 

ue(IKI~,:| . ,q" 

u e ( ~ % ~ ) / (  1 w_ le 

r, 

It is unique and q~ = ~b~* orc o Q' = q~E* o f2. Thus restriction to E gives 
q~g = ~E* o 12E, which proves the universality. �9 

By means of the canonical projection ~ one can transport results from 
the universal enveloping algebras to the Weyl algebras; for instance the 
Poincarr-Birkhoff-Witt theorem (Jacobson, 1961, p. 159) is valid in an 
analogous form. However, for the comparison with the classical algebra it is 
more convenient to study another basis, which is given by the totally sym- 
metrised monomials of  a basis of  E and 1 w (Helgason, 1962; p. 392). If  ?, 
denotes the symmetric permutation group of  r objects, we write for xi ~ E 

1 
Axl  x~. .. x~ = ~. ~ x,(l~ x,(2) . . .  x,c,~ (3.8) 

I :E~ r 

The vector space AVer spanned by the symmetrised monomials (3.8) of  

degreer i s~d imE:r - l~ -d imens iona l (T i lgner , "  ' " 1970, p. 118). Writing 
\ r / 
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A Wo = K 1 w and A W1 = E, one has 

weyl(E, tr)= G A W, (3.9) 

[ A x l . . . x , y ] _  = A [ x l . , .  x ,y]_ ,  xt, y ~ g (3.10) 

i.e. [AW,,E]_ c AWr-I,  and for u, v e E 
[Auv, A x l . . .  x,]_ = A [uv, xx . . .  x,]_ O. 11) 

i.e. [A 1472, A IV,]_ c A IV, (Tilgner, 1970). However, this can be generalised 
for i, k > 2 only in the form 

[AW,,AWk]_ c G AW~+k-2. (3.12) 

where one cannot drop the summation over m, as shows the following 
example. Using Axy = xy - �89 lw and 

Axyz  = xyz + �89 y) z + tr(z, x) y - a(y, z) x) (3. ! 3) 

Axyzw = xyzw - �89 y) Azw + a(x, z) Ayz + a(x, w) Ayz 

+ a(y, z) Axw + a(y, w) Axz  + a(z, w) Axy} 

- �88 y) ~(z, w) + ~(x, z) a(y, w) + ~(x, w) ~(y, z)} 1~, 
(3.14) 

an easy but tedious calculation gives 

[Axyz, Auvw]_ = A[xyz, uvw]_ + �88 u) a(y, v) a(z, w) 

+ ~(x, u) ~(y, w) ~(z, v) + ~(x, v) a(y, w) or(z, u) 
+ a(x, v) tr(y, u) ~r(z, w) + tr(x, w) a(y, u) tr(z, v) 

+ a(x, w) a(y, v) a(z, u)} lw (3.15) 

i.e. [AWa, A W a ] _ ~ A W 4 @ ~ I w .  This shows that the Lie algebra 
(weyl(E, tr), [,]_) is not - 2  graded in the decomposition (3.9). 

4. Quantisations 

The problem of quantisation has been treated often in physics (el. 
Ahrens & Babitt, 1965; Souriau, 1966; Streater, 1966; Agarwal & Wolf, 
1970; Shankara & Srinivas, 1971 and references therein). 

Definition: A quantisation is a vector space isomorphism ~ of 
sym(E) onto weyl(E, tr) with ~ ls  = lw. If in addition ~ is an 
isomorphism of the Lie algebras (sym(E),P) and (weyl(E, a), 
[,]_) then kv is a Dirac quantisation. (4.1) 

Comparison of (3.17) and (2.10) shows that the quantisation A': sym(E) --~ 
weyl(E, tr), defined by 

A' : xl  ^ . . .  ^ x, r--> Axl  . . .x,, x~ ~ E (4.2) 
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is no Dirac quantisation. It should be called Weft  quantisation since it is 
exactly the Weyl rule of associating a quantum mechanical observable to a 
given classical polynomial (Agarwal & Wolf, 1970, p. 2179). Besides the 
symmetrised basis of weyl(E,o-) there is another class of bases due to 
the Poincar~-Birkhoff-Witt theorem. Those bases consist of lw and the 
monomials of basis elements of Ein some fixed order)'standard monomials' 
(Jacobson, 1961, p. 156). Each of them allows a direct decomposition of 
type (3.9) of weyI(E, #) into vector spaces of standard monomials of equal 
degree, and defines a quantisation. However, comparison of (2.9) with 

[xy, vz]_ -- #(y, z) xv + a(y, v) xz  + #(x, z) vy + ~(x, v) zy 

= a(y, z) xv + tr(y, v) xz  + a(x, z) yv + a(x, v) yz  

- {a(x,  z) a(y, v) + a(x, v) a(y, z)} 1., (4.3) 

shows, that none of those bases induces a Dirac quantisation, 

More general: There is no Dirac quantisation: From P(ke-Xx, ke-Xy)= 
tr(x,y) ls follows that 7~-~E = Eo In addition tr(~x, key) 1 w = [kex, key]_ = 
keP(x,y) = a(x,y)Iv: (hence ke[~ is in the symplectic matrix group). Next 
from P(gt- IAW2,  ke - IE)= ke- l[AW2,E]_c 7J-XE and (2.8) follows 
keS2(E) = AWz;  continuation gives, gJS'(E)= AW,  for all r. But then 
[ keS3(E), 7'S 3(E)]_ = keP (S 3(E), Sa(E)) c A W4 is a contradiction to (3.17). 

5. The Moyal Realisation o f  the Wef t  Algebra 

Given two N-valued functions on E, sayf(z) and g(w), we write 

rr(Oz, O,,)f(z) g(w) = a(gradJ, gradw g) (5.1) 

Inserting a basis of E, one can show that a(a~, 0w) is a differential operator. 
Thus it can be iterated. For allf, g ~ sym(E*), M~(f,g) defined by 

M ~ ( f  g)(x) = [exp a~tr(O,, ~,)]f(z)g(w)l~=~.=~, ze ~ ~ (5.2) 

is an element of sym(E0, because the exponential series breakes. (f,g) ~+ 
M~(f,g)  is a bilinear composition on sym(E ~) and ls. is the identity with 
respect to it. It is well known (Grossmann et al., 1968) that M~,(f,,g) is 
associative; their proof can be made basis free immediately. A verification 
gives 

M~(x ' , yO  = x ~ o y" + ~etr(x,y) Is, E S2(E *) (~) ~ls ,  (5.3) 

M , ( M , ( x  ~, y~), zO = x ~ o yr o z # + ~e{tr(x, y) z ~ -- a(z, x) y# 

+ tr(y ,z)x  ~} e S~(EO @ E# (5.4) 
cf. (3.13). From (5.3) 

M~(x~,yO - M~(y ~, x ~) ---2~ecr(x, y) ls. (5.5) 

i.e. Nls. @ E" is the familiar Heisenberg Lie algebra with respect to the 
commutator of M. 



7 4  H A N S  T I L G N E R  

Theorem: The associative algebra (sym(E~ is a Wey] 
algebra over (E, a). (5.6) 

Proof: For (injective) embedding of E into sym(E ~) we take f2s: E --> E ~ 
~"~s : X t--~ X ~ 

Wey] . (E ,~) -  - -  ~ (~Ym(E~;) ~ ~'~) 

Z ~ 
From (5.5) and the definition of the Weyl algebra there are unique homo- 
morphisms X: weyl(E,e) ~ (sym(E~),M~) with ~s = Z o f2w and q~w*: 
weyl(E,e)--~L with q~=4~w* oOw, if q~ fulfills (3.1). Define a homo- 
morphism ~b*: (sym(E"),M~)--~L by q~w*=q~woX. It is unique and 
~ = 4~* o )C o Qw = ~b* o ~s which proves the universality. 

Corollary: sym(E ~) is generated by E ~ with respect to the 
multiplication M~ and (sym(E"),M~) is isomorphic to the 
algebra (3.3). (5.7) 

However, this establishes no solution of the Dirac quantisation problem 
since the commutator with respect to M~ is not the Poisson bracket. For 
~e=�89 (5.5) are the canonical commutation relations of quantum 
mechanics in the Moyal phase space formulation. In this case the commuta- 
tor becomes 

/[sin �89 0w)]f(z) g(w) lz ~w~ (5.8) 

which is the Moyal bracket (Moyal, 1949). For h-~-0 it reduces to the 
Poisson bracket. That it is a Lie bracket was first shown by Jordan & 
Sudarshan (1961). For ~ = R only ~e -- �89 is possible and in (5.8) one has 
the sinh series. 

6. The Polynomials of Second Degree 

The vector spaces S2(E) and AW2 are Lie subalgebras of (sym(E),P) 
and (weyl(E,a), [,]_) respectively. (AW2,[,]_) is isomorphic to the sym- 
plectic matrix Lie algebra in (E, a) (Tilgner, 1971) .This proof can be applied 
to (S2(E),P) too. 

More general: From the Jacobi identity and (2.10) follows that the vector 
spaces S~(E) are an infinite series of representation spaces for (S2(E),P). 
The corresponding facts hold in weyl(E,a) (Tilgner, 1970, p. 126). 

Following Uhlhorn (1957, p. 97), an algebraic version of the Ehrenfest 
theorem is proved, giving a second application of (3.17). For this let us 
recall some facts on time developments of  observables in a purely algebraical 
framework. A state on the algebra of observables is a (positive) linear 
functional (K-valued). The time development of a dynamical system is 
given by a one-parameter subgroup of the automorphism group of the 
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algebra. Since weyl(E,o') is simple (Nouaze & Revoy, 1971, p, 24) every 
derivation is inner (ibid., p. 29). Thus the time development of  X e weyl(E, a) 
is given by X ( z ) =  (expzad(H))X, z e R, for some H e  weyl(E,a), called 
the Hamiltonian operator, X(O)= X. Note that the exponential series 
breakes. The time development of  the expectation value to(X) in the state to 
is given by to(X) ~-> to,(X) := to(X(z)). One easily proves that 

A , '  o.),(X) = o.)([H, X]_) 

The condition that the classical and quantum time developments coincide is 

eo(M•(H, X )  -- M:(X,  H)) = oJ(P(H, X)) 

with H, X e  sym(E~). Thus for all X e  weyl(E,a), the time developments 
coincide if the degree of  H does not exceed two. 

Note that Wollenberg (1969b) has proved, that the classical Lie algebra 
(sym(E~),P) has outer derivations. 
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